Porous ZnO nanosheet arrays constructed on weaved metal wire for flexible dye-sensitized solar cells.
نویسندگان
چکیده
Porous zinc oxide (ZnO) nanosheet (NS) arrays constructed by connected nanocrystallites were built on weaved metal wire (WMW) via hydrothermal treatment followed by calcination, and used as photoanodes for flexible dye-sensitized solar cells (DSSCs). An overall light-to-electricity conversion efficiency (η) of 2.70% was achieved for the DSSC under 100 mW cm(-2) illumination, and this η was found to be much higher than that of the DSSC with ZnO nanowire (NW) as the photoanode (0.71%). The far superior performance of the DSSC with ZnO-NS is essentially attributed to: (i) the film consisting of nanosheets with interconnected nanocrystallites can allow relatively direct pathways for the transportation of electrons as the nanosheets have a regular structure with the sheets being oriented to the electrode; (ii) the nanocrystallites assembly and porous character of the nanosheets can provide a large surface area for dye adsorption, which is in favor of enhancing the light absorption and the light propagation; (iii) the nanopores embedded in the nanosheet can act as "branch lines" for more efficient electrolyte diffusion into the interstice of the densely packed nanosheets in the array. A further improvement in the efficiency of the DSSC with ZnO-NS was achieved through the atomic layer deposition (ALD) of an ultrathin titanium oxide (TiO2) layer onto the ZnO-NS layer. The larger charge transfer resistance along with the introduction of a TiO2 shell is thought to reduce the surface recombination and thus contribute to the increase in the open circuit voltage (Voc) of the DSCs and higher conversion efficiency (3.09%).
منابع مشابه
ZnO nanosheet arrays constructed on weaved titanium wire for CdS-sensitized solar cells
Ordered ZnO nanosheet arrays were grown on weaved titanium wires by a low-temperature hydrothermal method. CdS nanoparticles were deposited onto the ZnO nanosheet arrays using the successive ionic layer adsorption and reaction method to make a photoanode. Nanoparticle-sensitized solar cells were assembled using these CdS/ZnO nanostructured photoanodes, and their photovoltaic performance was stu...
متن کاملFlexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays
Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltai...
متن کاملNanorod-nanosheet hierarchically structured ZnO crystals on zinc foil as flexible photoanodes for dye-sensitized solar cells.
In this paper, ZnO nanorod-nanosheet hierarchical structures were fabricated using a facile method on zinc foil and used as flexible photoanodes in dye-sensitized solar cells (DSCs). Compared to nanorods (NRs) obtained by the dissolution-precipitation method, the nanorod-nanosheet (NR-NS) hierarchical structures obtained by a second-step homogeneous precipitation improved the performance of DSC...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملRoom temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells.
We fabricated ZnO photoelectrodes at room temperature by doctor-blading ZnO gel; the adequate interparticle connection and the effective ammonia activation process improved the flexible DSC's efficiency to 3.8% (under 100 mW cm(-2)).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2013